
2014年8月

■ 1、製品図入手し、2D図面の場合は3D図面を作成する。 3D図面作成後に重量計算し、注湯計画を立てる。

Welcome to EBA kogyo & EBA machinery!!

- 2、湯道・上がり・せき・金枠の分割方法など鋳造方案を検討し木型図を作成する。
- 3、製品の形状が複雑で難易度が高い場合、湯流れ解析ソフトを用いてシミュレーションし、 どんな方案が良いか比較検討する。

■ 4、鋳物冷却時の収縮率を考慮して約10%大きく木型を作る。木型完成検査後、離型剤を塗布 する。

Welcome to EBA kogyo & EBA machinery!!

- 5、木型に金枠を載せる
- 6、金枠にフラン樹脂を添加した鋳物砂を充填する。 約10分後鋳物砂の固まった金枠を木型から離し上下 反転、検査後焼き付き防止剤を塗布・乾燥する。
- 7、下型、中子、上型など鋳物砂で作った型を組立てる。砂型同士の隙間が製品の肉厚になる。
- 8、注湯場に移動し整列させ湯口を載せる。種類・製品名・重量の表示板を付ける

Welcome to EBA kogyo & EBA machinery !!

- 9、注湯計画に基づき材料を準備する。(銑鉄・スクラップ・リターン材、C、Siなど製品成分に合わせて配合する。)
- 10、電気炉に材料を投入・通電し溶解する。材料の溶け具合に応じて徐々に材料を追加投入する。

- 11、材料が溶けた後、CEメーター、プラズマ分光分析装置 を用いて成分を検査する。
- 12 不足成分を追加投入し再度溶解後、再検査。これを繰り返し、狙いの成分配合を達成する。

- 13、約1500°Cの溶湯を取鍋に移し、 接種剤を用いて最後に成分微調整する。ま た注湯前に引張試験・顕微鏡テストピース を作成する。
- 14、種類・製品名を確認し、製品型の湯口から注湯する約1400°C(材質・形状に合わせ温度設定する)。

Welcome to EBA kogyo & EBA machinery !!

- 15、(枠内焼鈍)鋳型内で250℃ぐらいになるまで徐冷
- 16、上型と下型を分離し振動を与えて固まった砂を粉砕、 ばらした砂を砂再生装置に回収し再利用する。
- 17、(応力除去焼鈍)鋳物550°C、溶接品625°C、 板厚25ミリにつき1時間保持後、炉冷。

枠内焼鈍	薄肉鋳物、小物
応力除去焼鈍 (歪取焼鈍)	一般部品:薄い部分が先に固まり収縮する時、まだ溶けた 状態の肉厚部分の湯が引っ張られるので引張残留応力が残 る。(空洞ができる時もある=ひけ巣) 中子がある場合:鉄と砂の収縮率が異なるため鋳物に引張 残留応力が残る。 冷し金を使用する場合:収縮スピードが場所によって異な るため引張残留応力が残る。

Welcome to EBA kogyo & EBA machinery!!

- 18、ショットブラストで砂を除去する
- 19、グラインダー・タガネなどで湯道やバリを除去、 形を整える
- 20、製品寸法や、硬度・表面性状など鋳物検査
- 21、再度ショットブラストして錆や汚れを除去する
- 22、錆止め塗装
- 23、乾燥後、製品を機械工場へ搬送

Welcome to EBA kogyo & EBA machinery !!

- 24、引張試験テストピースを NC旋盤で削り出し、引張試験機 で破断テスト
- 25、顕微鏡テストピースをエメリーペイパーで磨き上げた後、腐食させて金属組織境界を浮き立たせ、顕微鏡にて金属組織観察
- 26、TEST REPORT 作成。もし、 引張試験または金属組織検査に て不良判定の場合、その湯で製 作した製品は不良廃棄処分、再 製作となる。
- 27、非破壊検査(X線検査、超音波検査)は外部の検査機関に 委託

Eba Machinery corp.	CASTING MATERIAL TEST REPORT	EMC-FDR-TES-0
•		

Name	Drawing No.	Qty	Name	Drawing No.	Q
SWING ARM	15627603110-20	2			
SHAFT	310RY20-102	8			
F.BOSS	310SY23-796	10			

2013.3.19

1. Chemistry Composition (Standards : EMC-FDR-STD-001)

Composition	C %	Si %	Mn 96	P %	S %
Target	3.7 ±0.1	2.7±0.3	0.4 ±0.075	≤ 0.10	≤ 0.02
Actual	3.7	2.59	0.42	0.02	0.01
Result	ок	ок	ок	OK	OK

2. Physical Properties: (Standards: JIS G 5502(1989); JIS Z 2201(1980))

2.1 Hysical 1 Topel des . (Stalldards : 315 G 3302(1909), 315 Z 2201(1900))					
No.	Description	Specification	Actual	Result	
1	Tensile Strength	≥ 450 (N/mm²)	487	OK	
2	Elongation (%)	≥ 10 %	20.90%	OK	
3	Hardness (HB)	(143 ~ 217) (HB)	167	OK	

3. Microstructure Photos: ISO 945 (Sample: T. S. Bar)

Erode	4% Nitric Acid Alcohol (HNO3)			
Scale	10X			
Spheriodizing ratio	96			

FCD 450

球状黒鉛組織 ブルズ アイ

Prepared Confirm Approved

Welcome to EBA kogyo & EBA machinery !!

EBA流 鋳物製作手順 参考

- 鋳鉄は炭素量が多いので、振動吸収性・耐摩耗性・耐熱性・加工性など鉄鋼材料よりも優れているが、引張強さ・靱性が劣ります。
- 球状黒鉛鋳鉄は耐摩耗性・引張強さが優れています。
- 高周波焼入れには、FC300またはFCD600を使用します(HRc45-55)。

種類	記号	引張強さ N/mm²	伸び %	硬さ HB	主な用途
E. LET up Anto-Art.	FC150	150以上	_	212以下	モーター、バーナー
ねずみ鋳鉄 (吸振性良いが、引張強度弱い)	FC200	200以上	_	223以下	一般機械部品
	FC300	300以上	_	262以下	工作機械ベッド、パレット
- 11 11 - 41 44	FCD450	450以上	10以上	143-217	レバー、コラム
球状黒鉛鋳鉄 (引張強度・伸び良いが、吸振性劣る)	FCD500	500以上	7以上	150-230	쇼 型
	FCD600	600以上	3以上	170-270	金型、バルブ
リン青銅鋳物	PBC2	20以上	5以上	60以上	ウオーム歯車、軸受
アルミ合金鋳物	AC2B	14以上	1以上	70-90	シリンダヘッド
一般構造用圧延銅	ss400	400以上	21以上		
機械構造用炭素鋼(焼きならし)	s45c	570以上	20以上	167-229	
機械構造用炭素鋼(焼入れ焼き戻し)	s45c	690以上	17以上	201-269	

Welcome to EBA kogyo & EBA machinery!!

EBA流 鋳物製作手順 参考 DUCTILE IRON SOCIETY 公表資料

振動減衰時間比較:鉄、ダクタイル、鋳物

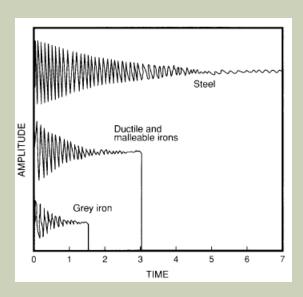


Figure 3.54 Relative Damping behaviours of steel, Ductile and Malleable Irons and Gray Iron

圧縮降伏応力と表面硬さ

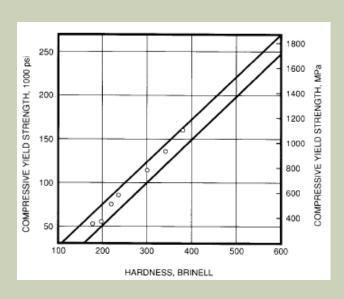
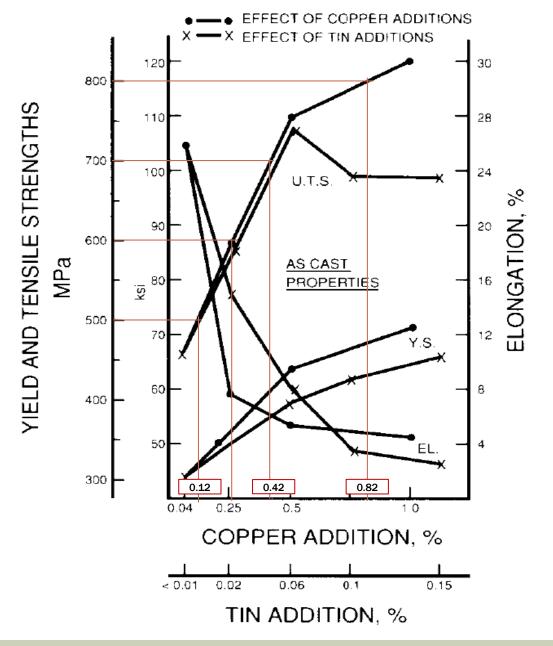


Figure 3.52 Relationship between hardness (BHN) and compressive yield stress

Ductile Iron Data for Design Engineers published 1990


Welcome to EBA kogyo & EBA machinery !!

EBA流 鋳物製作手順 参考資料

ダクタイル引張強度 に及ぼす Cu/Sn添加の影響

Figure 3.16
Tensile properties of as-cast
Ductile Irons with different Cu
and Sn contents.

Ductile Iron Data for Design Engineers published 1990

Welcome to EBA kogyo & EBA machinery !!